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Abstract

We present coupled channel calculations of the S-factor of 3H(d,n)4He transfer reaction. Poten-

tials between different subclusters relevant for description of the transfer reaction are obtained by

fits to cluster overlap functions calculated within the ab initio no-core shell model. This type of

combined ab initio/potential model approach was successfully applied in the past to describe low-

energy capture reactions important for nuclear astrophysics. For those reactions, typically a single

or just a few channels were needed for an accurate description of the S-factor. For the 3H(d,n)4He

transfer reaction, many channels are relevant, which makes the application of the combined ap-

proach quite challenging. In this report, we briefly outline the formalism, give overview of the

capture reaction results obtained in the past, present in detail the calculations performed for the

3H(d,n)4He transfer reaction and give outlook for a full ab initio approach with predictive power

capable to describe 3H(d,n)4He transfer reaction without ambiguities due to adjustable parameters.

PACS numbers:

∗navratil1@llnl.gov
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I. INTRODUCTION

Nuclear reactions occurring in a hot thermal environments are important to studies in

astrophysics, energy, and national security. Of particular importance is the d(T,n)4He re-

action. Indeed, the reliable modeling of processes dependent on this reaction require an

accurate evaluation of the reaction rate. While experimental data are preferable, it is very

difficult to perform experiments at the lowest incident energies, which are often important

for the modeling process. The reason for this is that because of the Coulomb barrier, the

reaction rate decreases substantially with incident energy, and experiments are limited by

background. Thus, an extrapolation method is required. It is important to note, however,

that it is dangerous to perform an extrapolation based entirely on current experimental

data. This is primarily because data at low energies have larger uncertainties that can mask

the presence of resonances or the effects of coupling to other channels in the reaction. This

is illustrated in Fig. 1 for the d(T,n)4He reaction where two extrapolations for the S-factor

based on an R-matrix fit to existing data are shown [1]. Here, the fit labeled “Livermore”

included only the large resonance at roughly 50 keV, while the fit labeled “Los Alamos” in-

cluded coupling to other channels in the reaction. When these other couplings are included,

the S-factor increases, and roughly a 5% discrepancy in the S-factor at low energies. This

can affect modeling of systems at low temperatures.

It should be noted that the R-matrix is not a theory for the process, but really is not much

more than a framework to perform a fit to the data. In this regard, a more fundamental

theory for reactions involving light nuclei is needed. In fact, at this point, no fundamental

theory for light-ion reactions exists. At LLNL, the Nuclear theory & Modeling (NTM) Group

has active research in the ab initio description of light nuclei, and is extending this effort to

describe dynamic processes, such as reactions. In this report, we show the results of our first-

generation model, which while it is not fully ab initio, is based on the structure obtained

with the ab initio, No-core Shell Model (NCSM). We use the NCSM to compute radial-

cluster overlaps that are used to describe the radial wave functions for the cluster channels.

Since one of the weaknesses of the NCSM is the asymptotic behavior of the radial wave

functions and the inclusion of continuum states, we use a potential model to describe the

dynamics within a coupled-channels framework. While this framework was very successful

for the radiative capture reaction 7Be(p,γ)8B, our results point to some deficiencies in this
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FIG. 1: Extrapolation of the 3H(d,n)4He S-factor to very low energies.

approach due to a significantly increased complexity of the d(T,n)4He reaction, in particular

its multi-channel character, and the need to finalize a fully ab initio picture based on the

resonating group method (RGM), which is currently underway in the NTM group.

This report is organized as follows. In Sect. II, we briefly introduce the ab initio NCSM.

In Sect. 3, we discuss the calculation of the overlap functions from the ab initio NCSM wave

functions, the correction of their asymptotic behavior using the Woods-Saxon potential fit

and present the past successful applications of the corrected overlap functions to capture

reactions important for astrohysics: the 7Be(p,γ)8B and 3He(α,γ)7Be. Success of those

applications served as a motivation to generalize the approach and use it for the far more

complex case of the 3H(d,n)4He transfer reaction. In Sect. IV, we discuss the calculation

of the 3H(d,n)4He S-factor within the combined ab initio NCSM/potential model approach.

Conclusions are presented in Sect. V and in Sect. VI we give an outlook of our work in
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progress, a fully ab initio calculation of the light-ion reactions using a combination of the ab

initio NCSM with the resonating group method technique.

II. AB INITIO NO-CORE SHELL MODEL

In the NCSM, we start from the intrinsic A-nucleon HamiltonianHA = Trel+V , where Trel

is the relative kinetic energy and V is the sum of two-body or possibly higher-body nuclear

and Coulomb interactions. To facilitate our calculations, we add a center-of-mass Harmonic

Oscillator (HO) Hamiltonian, whose effect will be eventually subtracted in the final many-

body calculation, and for a two-body interaction obtain the HO frequency-dependent Hamil-

tonian HΩ
A =

∑A
i hi +

∑A
i<j V

Ω,A
ij . The hi is a one-body HO term and the two-body interac-

tion V Ω,A
ij contains a term proportional to 1

A
(~ri − ~rj)

2 [2–4]. Since we solve the many-body

problem in a finite HO basis space, it is necessary that we derive a model-space dependent

effective Hamiltonian. For this purpose, we perform a unitary transformation [5, 6] on the

Hamiltonian, which accommodates the short-range correlations. In general, the transformed

Hamiltonian is an A-body operator. The first-order approximation is to develop a two-

particle cluster effective Hamiltonian, while the next improvement is to include three-particle

clusters, and so on. The effective interaction is obtained from the decoupling condition be-

tween the model space and the excluded space for the two- or three-nucleon transformed

Hamiltonian. On the two-body cluster level, we solve h1 +h2 +V Ω,A
12 , and from the transfor-

mation we obtain V Ω,A
2−eff,12 and then solve the A-body problem using

∑A
i hi +

∑A
i<j V

Ω,A
2−eff,ij.

On the three-body cluster level, we solve h1+h2+h3+V
Ω,A
12 +V Ω,A

13 +V Ω,A
23 to obtain V Ω,A

3−eff,123,

and then use
∑A

i hi + 1
A−2

∑A
i<j<k V

Ω,A
3−eff,ijk for the A-body problem. The resulting two- or

three-body effective Hamiltonian depends on the nucleon number A, the HO frequency Ω,

and Nmax. The effective interaction approaches the bare interaction for Nmax →∞.

III. CLUSTER OVERLAP FUNCTIONS AND S-FACTORS OF CAPTURE RE-

ACTIONS

In the ab initio NCSM calculations, we are able to obtain wave functions low-lying states

of light nuclei in large model spaces. An interesting and important question is, what is

the cluster structure of these wave functions. That is we want to understand, how much,
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e.g. an 6Li eigenstate looks like 4He plus deuteron, an 7Be eigenstate looks like 4He plus

3He, an 8B eigenstate looks like 7Be plus proton and so on. This information is important

for the description of low-energy nuclear reactions. To gain insight, one introduces channel

cluster form factors (or overlap integrals, overlap functions). The formalism for calculating

the channel cluster form factors from the NCSM wave functions was developed in Ref. [7].

Here we just briefly repeat a part of the formalism relevant to the simplest case when the

lighter of the two clusters is a single-nucleon.

We consider a composite system of A nucleons, i.e. 8B, a nucleon projectile, here a

proton, and an A− 1-nucleon target, i.e. 7Be. Both nuclei are assumed to be described by

eigenstates of the NCSM effective Hamiltonians expanded in the HO basis with identical HO

frequency and definitions of the model space that are the same (for the eigenstates of the

same parity) or differing by one unit of the HO excitation (for the eigenstates of opposite

parity). The target and the composite system is described by wave functions expanded in

Slater determinant single-particle HO basis (that is obtained from a calculation using a shell

model code like Antoine).

Let us introduce a projectile-target wave function

〈~ξ1 . . . ~ξA−2r
′r̂|Φ(A−1,1)JM

(l 1
2
)j;αI1

; δr〉 =
∑

(jmI1M1|JM)(lml
1
2
ms|jm) δ(r−r′)

rr′

×Ylml
(r̂)χms〈~ξ1 . . . ~ξA−2|A− 1αI1M1〉 , (1)

where 〈~ξ1 . . . ~ξA−2|A − 1αI1M1〉 and χms are the target and the nucleon wave function,

respectively. Here, l is the channel relative orbital angular momentum, ~ξ are the target

Jacobi coordinates defined by

~ξ0 =

√
1

A
[~r1 + ~r2 + . . .+ ~rA] , (2)

~ξ1 =

√
1

2
[~r1 − ~r2] , (3)

~ξ2 =

√
2

3

[
1

2
(~r1 + ~r2)− ~r3

]
, (4)

. . .

~ξA−2 =

√
A− 2

A− 1

[
1

A− 2
(~r1 + ~r2 + . . .+ ~rA−2)− ~rA−1

]
, (5)

~ξA−1 =

√
A− 1

A

[
1

A− 1
(~r1 + ~r2 + . . .+ ~rA−1)− ~rA

]
, (6)

and ~r =
[

1
A−1

(~r1 + ~r2 + . . .+ ~rA−1)− ~rA

]
describes the relative distance between the nucleon
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and the center of mass of the target. The spin and isospin coordinates within the target

were omitted for simplicity.

The channel cluster form factor is then defined by

gAλJ
(l 1

2
)j;A−1αI1

(r) = 〈AλJ |AΦ
(A−1,1)J

(l 1
2
)j;αI1

; δr〉 , (7)

with A the antisymmetrizer and |AλJ〉 an eigenstate of the A-nucleon composite sys-

tem (here 8B). It can be calculated from the NCSM eigenstates obtained in the Slater-

determinant basis from a reduced matrix element of the creation operator. It can be derived

as follows. First, we use the factorization of the translationally-invariant NCSM Hamiltonian

eiegenstates

〈~r1 . . . ~rAσ1 . . . σAτ1 . . . τA|AλJMTMT 〉SD

= 〈~ξ1 . . . ~ξA−1σ1 . . . σAτ1 . . . τA|AλJMTMT 〉ϕ000(~ξ0; b) , (8)

for both the composite A-nucleon and the target A−1-nucleon eigenstate. With the help of

the HO wave function transformations∑
Mm

(LMlm|Qq)ϕNLM(~RA−1
CM )ϕnlm(~rA) =∑

n′l′m′N ′L′M ′

〈n′l′N ′L′Q|NLnlQ〉 1
A−1

(l′m′L′M ′|Qq)ϕn′l′m′(~ξA−1)ϕN ′L′M ′(~ξ0) , (9)

we obtain

SD〈AλJ |AΦ
(A−1,1)J

(l 1
2
)j;αI1

;nl〉SD = 〈nl00l|00nll〉 1
A−1

〈AλJ |AΦ
(A−1,1)J

(l 1
2
)j;αI1

;nl〉 , (10)

with a general HO bracket due to the CM motion. The nl in (10) refers to a replacement

of δr by the HO Rnl(r) radial wave function. Second, we relate the SD overlap to a linear

combination of matrix elements of a creation operator between the target and the composite

eigenstates SD〈AλJ |a†nlj|A − 1αI1〉SD. The subscript SD refers to the fact that these states

were obtained in the Slater determinant basis. Such matrix elements are easily calculated

by shell model codes. The result is

〈AλJ |AΦ
(A−1,1)J

(l
1
2
, j);αI1

; δr〉 =
∑

n

Rnl(r)
1

〈nl00l|00nll〉 1
A−1

1

Ĵ
(−1)I1−J−j

× SD〈AλJ ||a†nlj||A− 1αI1〉SD . (11)
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The eigenstates expanded in the Slater determinant basis contain CM components. A general

HO bracket, which value is simply given by

〈nl00l|00nll〉 1
A−1

= (−1)l

(
A− 1

A

) 2n+l
2

, (12)

then appears in Eq. (11) in order to remove these components. The Rnl(r) in Eq. (11) is

the radial HO wave function with the oscillator length parameter b =
√

~
A−1

A
mΩ

, where m is

the nucleon mass.

A conventional spectroscopic factor is obtained by integrating the square of the cluster

form factor:

SAλJ
(l 1

2
)j;A−1αI1

=

∫
drr2|gAλJ

(l 1
2
)j;A−1αI1

(r)|2 . (13)

A generalization for projectiles (= the lighter of the two clusters) with 2, 3 or 4 nucleons is

straightforward, although the expressions become more involved. In all cases, the projectile

is described by wave function expanded in Jacobi coordinate HO basis, while the composite

and the target eigenstates are expanded in the Slater determinant HO basis. Full details are

given in Ref. [7].

The overlap functions introduced in this subsection are relevant for description of low-

energy nuclear reactions. Before we procceed to the application to the 3H(d,n)4He S-factor,

we first briefly review the past applications of the ab initio overlap functions to γ-capture

reactions important for nuclear astrophysics. Success of those applications served as a mo-

tivation to generalize the approach and use it for the more complex case of the 3H(d,n)4He

transfer reaction.

A. 7Be(p,γ)8B

The 7Be(p,γ)8B capture reaction serves as an important input for understanding the solar

neutrino flux [9]. Recent experiments have determined the neutrino flux emitted from 8B

with a precision of 9% [10]. On the other hand, theoretical predictions have uncertainties of

the order of 20% [11, 12]. The theoretical neutrino flux depends on the 7Be(p,γ)8B S-factor.

Many experimental and theoretical investigations studied this reaction.

In this ection, we discuss a calculation of the 7Be(p,γ)8B S-factor starting from ab initio

wave functions of 8B and 7Be. We note that full details of our 7Be(p,γ)8B investigation were

published in Refs. [14, 15].
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Our calculations for both 7Be and 8B nuclei were performed using the high-precision

CD-Bonn 2000 NN potential [8] in model spaces up to 10~Ω (Nmax = 10) for a wide range

of HO frequencies. From the obtained 8B and 7Be wave functions, we calculate the channel

cluster form factors (overlap functions, overlap integrals) gAλJ
(l 1

2
)j;A−1αI1

(r) as discussed in the

previous subsection. Here, A = 8, l is the channel relative orbital angular momentum and

~r =
[

1
A−1

(~r1 + ~r2 + . . .+ ~rA−1)− ~rA

]
describes the relative distance between the proton and

the center of mass of 7Be. The two most important channels are the p-waves, l = 1, with the

proton in the j = 3/2 and j = 1/2 states, ~j = ~l+~s, s = 1/2. In these channels, we obtain the

spectroscopic factors of 0.96 and 0.10, respectively. The dominant j = 3/2 overlap integral

is presented in the left panel of Fig. 2 by the full line. The 10~Ω model space and the HO

frequency of ~Ω = 12 MeV were used. Despite the fact, that a very large basis was employed

in the present calculation, it is apparent that the overlap function is nearly zero at about

10 fm. This is a consequence of the HO basis asymptotic behavior. As already discussed,

in the ab initio NCSM, the short-range correlations are taken into account by means of the

effective interaction. The medium-range correlations are then included by using a large,

multi-~Ω HO basis. The long-range behavior is not treated correctly, however. The proton

capture on 7Be to the weakly bound ground state of 8B associated dominantly by the E1

radiation is a peripheral process. In order to calculate the S-factor of this process we need

to go beyond the ab initio NCSM as done up to this point. We expect, however, that the

interior part of the overlap function is realistic. It is then straightforward to find a quick fix

and correct the asymptotic behavior of the overlap functions, which should be proportional

to the Whittaker function.

One possibility we explored utilizes solutions of a Woods-Saxon (WS) potential, i.e.,

VWS(r) = V0f(r, R0, a0)− Vls

(
~
mπc

)
1

r

d

dr
f(r, Rls, als)~l · ~s+ VCoul(r, R0) , (14)

with f(r, R, a) = 1
1+exp((r−R)/a)

. In particular, we performed a least-square fit of a WS

potential solution to the interior of the NCSM overlap in the range of 0 − 4 fm. The

WS potential parameters were varied in the fit under the constraint that the experimental

separation energy of 7Be+p, E0 = 0.137 MeV, was reproduced. In this way we obtain a

perfect fit to the interior of the overlap integral and a correct asymptotic behavior at the

same time. The result is shown in Fig. 2 by the dashed line.

Another possibility is a direct matching of logarithmic derivatives of the NCSM overlap
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integral and the Whittaker function: d
dr
ln(rglj(r)) = d

dr
ln(CljW−η,l+1/2(2k0r)), where η is

the Sommerfeld parameter, k0 =
√

2µE0/~ with µ the reduced mass and E0 the separation

energy. Since asymptotic normalization constant (ANC) Clj cancels out, there is a unique

solution at r = Rm. For the discussed overlap presented in Fig. 2, we found Rm = 4.05 fm.

The corrected overlap using the Whittaker function matching is shown in Fig. 2 by a dotted

line. In general, we observe that the approach using the WS fit leads to deviations from

the original NCSM overlap starting at a smaller radius. In addition, the WS solution fit

introduces an intermediate range from about 4 fm to about 6 fm, where the corrected overlap

deviates from both the original NCSM overlap and the Whittaker function. Perhaps, this is

a more realistic approach compared to the direct Whittaker function matching.

The S-factor for the reaction 7Be(p, γ)8B also depends on the continuum wave function,

R
(c)
lj that we obtain for s and d waves from a WS potential model. Since the largest part

of the integrand stays outside the nuclear interior, one expects that the continuum wave

functions are well described in this way. In order to have the same scattering wave function

in all the calculations, we chose a WS potential from Ref. [16] that was fitted to reproduce

the p-wave 1+ resonance in 8B. It was argued [17] that such a potential is also suitable for

the description of s- and d-waves. We note that the S-factor is very weakly dependent on

the choice of the scattering-state potential (using our fitted potential for the scattering state

instead changes the S-factor by less than 1.5 eV b at 1.6 MeV with no change at 0 MeV).

Our obtained S-factor is presented in Figs. 3 where contribution from the two partial

waves are shown together with the total result. It is interesting to note a good agreement

of our calculated S-factor with the recent Seattle direct measurement [18].

In order to judge the convergence of our S-factor calculation, we performed a detailed

investigation of the model-space-size and the HO frequency dependencies. We used the HO

frequencies in the range from ~Ω = 11 MeV to ~Ω = 15 MeV and the model spaces from

6~Ω to 10~Ω. By analysing these results, we arrived at the S-factor value of S17(10 keV) =

22.1± 1.0 eV b.

B. 3He(α,γ)7Be

The 3He(α,γ)7Be capture reaction cross section was identified the most important un-

certainty in the solar model predictions of the neutrino fluxes in the p-p chain [12]. We
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FIG. 2: Overlap function, rg(r), for the ground state of 8B with the ground state of 7Be plus

proton as a dependence on separation between the 7Be and the proton. The p-wave channel with

j = 3/2 is shown. The full line represents the NCSM result obtained using the CD-Bonn 2000

NN potential, the 10~Ω model space and the HO frequency of ~Ω = 12 MeV. The dashed lines

represent corrected overlaps obtained from a Woods-Saxon potential whose parameters were fit to

the NCSM overlaps up to 4.0 fm under the constraint to reproduce the experimental separation

energy. The dotted lines represent overlap corrections by the direct Whittaker function matching.

investigated the bound states of 7Be, 3He and 4He within the ab initio NCSM and calcu-

lated the overlap functions of 7Be bound states with the ground states of 3He plus 4He as

a function of separation between the 3He and the α particle. The obtained p-wave overlap

functions of the 7Be 3/2− ground state excited state are presented in Fig. 4 by the full line.

The dashed lines show the corrected overlap function obtained by the least-square fits of the

WS parameters done in the same way as in the 8B↔7Be+p case. The corresponding NCSM

spectroscopic factors obtained using the CD-Bonn 2000 in the 10~Ω model space for 7Be

(12~Ω for 3,4He) and HO frequency of ~Ω = 13 MeV are 0.93 and 0.91 for the ground state
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FIG. 3: The 7Be(p,γ)8B S-factor obtained using the NCSM overlap functions with corrected asymp-

totics as described in the text. The dashed and dashed-dotted lines show the contribution due to

the l = 1, j = 3/2 and j = 1/2 partial waves, respectively. Experimental values are from Refs.

[18, 19].

and the first excited state of 7Be, respectively. We note that contrary to the 8B↔7Be+p

case, the 7Be↔3He+α p-wave overlap functions have a node.

Using the corrected overlap functions and a 3He+α scattering state obtained using the

potential model of Ref. [20] we calculated the 3He(α,γ)7Be S-factor. Our 10~Ω result is

presented in the left panel of Fig. 5. We show the total S-factor as well as the contributions

from the capture to the ground state and the first excited state of 7Be. By investigating

the model space dependence for 8~Ω and 10~Ω spaces we estimate the 3He(α,γ)7Be S-factor

at zero energy to be higher than 0.44 keV b, the value that we obtained in the discussed

case shown in Fig. 5. Our results are similar to those obtained by K. Nollett [21] using

the variational Monte Carlo wave functions for the bound states and potential model wave

functions for the scattering state.
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FIG. 4: The overlap function, rg(r), for the first excited state of 7Be with the ground state of 3He

plus α as a dependence on separation between the 3He and the α particle. The p-wave channel

overlap function with j = 3/2 is shown. The full line represents the NCSM result obtained using

the CD-Bonn 2000 NN potential and the 10~Ω model space for 7Be (12~Ω for 3,4He) with the

HO frequency of ~Ω = 13 MeV. The dashed line represents a corrected overlap obtained with a

Woods-Saxon potential whose parameters were fit to the NCSM overlap up to 3.4 fm under the

constraint to reproduce the experimental separation energy.

C. 3H(α,γ)7Li

An important check on the consistency of the 3He(α,γ)7Be S-factor calculation is the

investigation of the mirror reaction 3H(α,γ)7Li, for which more accurate data exist [22].

Our results obtained using the CD-Bonn 2000 NN potential are shown in Fig. 6. It is

apparent that our 3H(α,γ)7Li results are consistent with our 3He(α,γ)7Be calculation. We

are on the lower side of the data and we find an increase of the S-factor as we increase the

size of our basis.

More details on the ab initio NCSM investigation of the 3He(α,γ)7Be and 3H(α,γ)7Li
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FIG. 5: The full line shows the 3He(α,γ)7Be S-factor obtained using the NCSM overlap functions

with corrected asymptotics. The dashed lines show the 7Be ground- and the first excited state

contributions. The calculation was done using the CD-Bonn 2000 NN potential and the 10~Ω

model space for 7Be (12~Ω for 3,4He) with the HO frequency of ~Ω = 13 MeV.

S-factors are given in Ref. [23].

IV. CALCULATION OF THE 3H(D,N)4HE S-FACTOR

Based on the success of the capture reactions S-factor calculations starting from the ab

initio NCSM overlap functions, we now want to generalize this approach to the more complex

calculation of the 3H(d,n)4He S-factor. In this case, there are several different channels that

need to be taken into account but, most importantly, the reaction proceeds through a 3/2+

resonance in 5He unlike the capure reactions discussed earlier that proceeded through a

non-resonant E1 capture. Our task is not just to determine the cluster-cluster potentials

that describe the bound states but also potentials that describe resonances in 5He. On top

of it, those potentials should describe the system at the resonant energy but also at different
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FIG. 6: The full line shows the 3H(α,γ)7Li S-factor obtained using the NCSM overlap functions

with corrected asymptotics. The dashed lines show the 7Li ground- and the first excited state

contributions. The calculation was done using the CD-Bonn 2000 NN potential and the 10~Ω

model space for 7Li (12~Ω for 3H and 4He) with the HO frequency of ~Ω = 13 MeV.

energies in some energy range that includes the resonant energy.

We perform our calculations in a coupled channel formalism using the code Fresco. We

assume that the reaction proceeds as a transfer reaction when the deuteron is broken and

the proton is attached to the 3H nucleus. In addition, we consider a process in which the

triton is broken into the deuteron and a neutron and the two deuterons merge to form 4He.

In order to set up the coupled channel equations, we need to determine potentials between

different cluster partitions. In particular, we need to consider the following partitions and

cluster overlap functions for the bound states: 3H↔2H+n, 4eH↔2H+d, 4eH↔3H+p,and also

we need to input a nucleon-nucleon potential to obtain the deuteron wave function. Then,

we need to know the n+4He scattering potential that we obtain from fitting the ab initio

NCSM 3/2− 5He wave function at the experimental resonance energy and finally and most

14



importantly, we need to determine the d+t scattering potential that we determine by fitting

the ab initio NCSM 3/2+ 5He wave function at the experimental resonance energy.

In the following subsections we first desribe the potential determination for the bound

states and in next for the scattering states.

A. Bound-state potentials from ab initio wave functions

First, we investigate the overlap function of 3H bound state with d+n to dermine a

potential that binds deuteron and neutron to form 3H. In Fig. 7, we show the overlap

function obtained within the ab initio NCSM by a black line. The dashed red line then

shows our WS potential fit to the interior part of the oveelap function under the constraint

to reproduce the experimental separation energy of 6.257 MeV. The WS parameters and the

spectroscopic factor are given in Table I.

TABLE I: Parameters of the Woods-Saxon potentials obtained in the fits to the interior part of the

NCSM bound-state overlap functions under the constraint to reproduce experimental separation

energies. The spectroscopic factors are given in the last column.

V0 R0 a0 S

〈3H|2H+n〉 -34.541 2.207 0.436 1.321

〈4He|d+d〉 -63.963 1.941 0.550 0.936

〈4He|3H+p〉 -53.788 2.264 0.417 1.719

Next, we consider the overlap function of 4He with d+d to dermine a potential that binds

the two deuterons to form 4He. Our ab initio NCSM overlap function is presented in Fig. 8

by the solid black line. The WS fit to the interior part of the overlap is shown by the red

dashed line. The experimental separation energy of 23.846 MeV was used as a constraint.

Unlike in the cases of the previously studied overlap functions, due to the fact that 4He is so

deeply bound there is a very little visible difference even at the tail of the overlap function.

In Fig. 9, we present the overlap function of 4He with 3H and proton. The ab initio NCSM

overlap function is given by the solid black line while the WS fit to the interior of the ab

initio overlap is shown by the red dashed line. The fit was constrained by the experimental

separation energy of 19.814 MeV. Similarly as in the case of the 4He↔d+d overlap function,

15
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FIG. 7: Overlap function, rg(r), for the ground state of 3H with the deuteron plus proton as a

dependence of their separation. The s-wave channel with j = 1/2 is shown. The full line represents

the NCSM result obtained using the CD-Bonn 2000 NN potential, the 18~Ω model space and the

HO frequency of ~Ω = 28 MeV. The dashed lines represent corrected overlaps obtained from a

Woods-Saxon potential whose parameters were fit to the NCSM overlap up to 5.0 fm under the

constraint to reproduce the experimental separation energy.

there is little visible difference between the ab initio and the fitted overlap even in the tail

region due to the large separation energy of 3H+p in 4He. The constrained fit gives us a

WS potential that binds the 3H and proton to form 4He. This potential together with the

spectroscopic factor obtained in our ab initio calculation serves as input for the coupled

channel calculations of the 3H(d,n)4He S-factor. The WS parameters and the spectroscopic

factors can be found in Table I.

We also need to input a nucleon-nucleon potential to obtain the deuteron wave function.

For this purpose we employ the Reid soft-core potential that is already built into the Fresco

code.
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FIG. 8: Overlap function, rg(r), for the ground state of 4He with the deuteron plus deuteron as a

dependence of their separation. The s-wave channel with j = 1 is shown. The full line represents

the NCSM result obtained using the CD-Bonn 2000 NN potential, the 12~Ω model space and the

HO frequency of ~Ω = 19 MeV. The dashed lines represent corrected overlaps obtained from a

Woods-Saxon potential whose parameters were fit to the NCSM overlap up to 4.0 fm under the

constraint to reproduce the experimental separation energy.

B. n+4He scattering potential from the 5He 3/2− resonance ab initio wave function

To calculate the 3H(d,n)4He S-factor, we need to determine in addition to the cluster-

cluster binding potentials also the scattering potentials that describe the incoming and

outgoing binary systems. We first start with the simpler case of the n+4He. The 3H(d,n)4He

reaction proceeds primarily through a 3/2+ resonance. Therefore, it is important to know

the n+4He potenatial that describe well particularly the d3/2 channel. Experimentally, it

is known that the n+4He phase shift is very small in this channel. At the same time, the

n+4He scattering is dominated by the p3/2 resonance corresponding to the 5He ground state.

We therefore concentrate on determination of the n+4He potential using this resonance and
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FIG. 9: Overlap function, rg(r), for the ground state of 4He with the ground state of 3H plus

proton as a dependence of their separation. The s-wave channel with j = 1/2 is shown. The

full line represents the NCSM result obtained using the CD-Bonn 2000 NN potential, the 18~Ω

model space and the HO frequency of ~Ω = 28 MeV. The dashed lines represent corrected overlaps

obtained from a Woods-Saxon potential whose parameters were fit to the NCSM overlap up to 6.0

fm under the constraint to reproduce the experimental separation energy.

subsequently we test whether the potential determined this way reproduces the d3/2 phase

shift correctly.

In Fig. 10, we show by the solid black line the overlap function of 5He with 4He plus

neutron obtained within the ab initio NCSM using the 5He 3/2− ground state wave function

and the 4He ground state wave function. In the same figure, we show by the red dashed line

a resonance scattering wave function from WS potential fitted to the interior part of the ab

initio overlap function at the experimental resonance energy of 0.89 MeV. During the fit, we

kept the spin-orbit potential strength fixed at a value that we found to describe reasonably

also the p1/2 channel. The WS parameters obtained in this fit are given in Table II.
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FIG. 10: Overlap function, rg(r), for the ground state of 5He with the ground state of 4He plus

neutron as a dependence of their separation. The p-wave channel with j = 3/2 is shown. The

full line represents the NCSM result obtained using the CD-Bonn 2000 NN potential, the 12~Ω

model space and the HO frequency of ~Ω = 16 MeV. The dashed lines represent corrected overlaps

obtained from a Woods-Saxon potential whose parameters were fit to the NCSM overlap up to 3.6

fm under the constraint to reproduce the experimental resonance energy of 0.89 MeV.

In Fig. 11, we present phase shift dependence on the center of mass energy of the n+4He

system for the p3/2, p1/2, s1/2 and d3/2 channels. The WS potential determined as de-

scribed above and given in Table 2 was used. We repeat that the WS potential was deter-

mined from the 5He 3/2− resonance at a single energy corresponding to the experimental

threshold energy. We can see that the potential not only describes rather well the p3/2

phase shifts in a very wide energy range from 0 up to about 20 MeV but it also describes

reasonably phase shifts in other waves. We note that experimental data are displayed only

for the p3/2 channel. The good behavior of the d3/2 phase shift is of particular importance

as discussed earlier.
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TABLE II: Parameters of the n+4He Woods-Saxon potential obtained in the fit to the interior part

of the NCSM 5He 3/2− resonance overlap function under the constraint to reproduce experimental

threshold energy.

〈5He3/2−|4He+n〉

V0 R0 a0 Vls Rls als

-65.162 1.762 0.510 -6.0 2.467 0.228
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FIG. 11: The n+4He phase shifts for the p3/2, p1/2, s1/2 and d3/2 channels in the 0 to 20 MeV

center-of-mass energy range. Woods-Saxon potential obtained from the 5He 3/2− resonance overlap

function fit shown in Fig. 10 was used for all channels. The experimental data are for the p3/2

channel.

C. 2H+3H scattering potential from the 5He 3/2+ resonance ab initio wave function

The most challenging task is the determination of the d+t scattering potential. To

determine this potential, we make use of the 5He 3/2+ resonance known to play a pivotal
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role in the 3H(d,n)4He transfer reaction. This resonance is dominated by the s-wave channel.

However, due to the J = 0 spin of 4He and J = 1/2 spin of the neutron, the outgoing n+4He

must be in a d wave. Consequently, tensor interaction plays a crucial role in the description

of the transfer reaction. Therefore, we need to pay attention to the role of the tensor

interaction not only in the deuteron bound state but also in the d+t 3/2+ resonant channel.
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FIG. 12: Overlap functions, rg(r), for the 3/2+ excited state of 5He with the ground state of 3H

plus deuteron as a dependence of their separation. The s-wave channel with j = 1 abd d-wave

channels with j = 1, 2 are shown. The full lines represent the NCSM results obtained using the

CD-Bonn 2000 NN potential, the 12~Ω model space and the HO frequency of ~Ω = 13 MeV. The

dashed lines represent corrected overlaps obtained from a Woods-Saxon potential whose parameters

were fit in a coupled channel calculation to all three shown NCSM overlaps simultaneously up to

4 fm under the constraint to reproduce the experimental resonance energy.

In Fig. 12, we present by full lines overlap functions of 5He 3/2+ state with deuteron

and 3H obtained within the ab initio NCSM calculation. The 5He 3/2+ state was actually

the second excited 3/2+ state in our ab initio NCSM calculation. The first one has ba-
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sically a zero overlap with the d+t and corresponds to a non-resonant n+4He continuum

state [7]. Unlike for the previously discussed overlap functions, there are three partial waves

corresponding to the s wave with j = 1 and d waves with j = 1 and j = 2. The angu-

lar momentum j is coupled with the 3H spin of 1/2 to the total 3/2+ resonance angular

momentum. As emphasized above, the tensor interaction is crucial for understanding the

3H(d,n)4He transfer reaction. We must find a potential that couples all three partial waves.

This potential should have a tensor, spin-spin and also spin-orbit component. To find such a

potential, we wrote a new code named Pluto capable to solve coupled-channel equations for

the d+t system. The code uses Lagrange-mesh method in combination with the microscopic

R-matrix approach to solve the problem. The code is called by the separate least-square

fitting code that determines the potential parameters. The result of our coupled-channel fit

of the interior of the ab initio NCSM overlap functions is shown by dashed lines in Fig. 12.

The fit was constrained to reproduce the experimental threshold energy. We can see that the

two dominant overlap functions are fitted rather well. The relative sign of the partial waves

plays a role in determination of the tensor and spin-orbit potentials. The WS parameters

obtained in our fit are given in Table III.

TABLE III: Parameters of the d+t Woods-Saxon potentials obtained in the fits to the interior part

of the NCSM 5He 3/2+ resonance overlap functions under the constraint to reproduce experimental

threshold energy. The V ′
0 in the last line is a modified central potential discussed in the text.

〈5He 3/2+|d+t〉

V0 R0 a0 Vls Rls als

-48.76 2.280 0.685 14.786 1.872 0.363

Vss Rss ass VT RT aT

-5.0 1.217 0.054 -2.354 1.983 0.434

V ′
0 R′

0 a′0

-74.6 1.95 0.45
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D. 3H(d,n)4He S-factor from the combined ab initio/potential model approach

Using the potentials and spectroscopic factors obtained as described in previous subsec-

tions and summerized in Tables I, II and III, we performed coupled-channel calculations

of the 3H(d,n)4He transfer reaction using the code Fresco. This does not include antisym-

metrisation between the clusters, so that the reaction mechanism must be calculated by

distinct contributions from proton and deuteron transfers. This is because the same final

states can be reached by viewing the transfer as (n + p)d + t → (t + p)α + n as well as

d+ (d+ n)t → (d+ d)α + n.

The transfer calculation uses a total system wave function of

ΨJM = ψdψtϕ
J
L(Rdt) + ψαψnϕ

J
L′(Rαn) (15)

in which the ψ’s are the bound states of the respective nuclei, and the ϕL are the scattering

wave functions satisfying boundary conditions for Rdt, Rαn � Rm of

ϕJ
L(Rdt) =

i

2
[δLLi

H−
L (kdtRdt)− SJ

LLi
H+

L (kdtRdt)],

ϕJ
L′(Rαn) = − i

2
SJ

L′Li
H+

L′(kαnRαn) . (16)

Here Li is the partial wave with the component of the d+ t incoming plane wave.

The scattering wave functions ϕL(R) are found by solving the standard coupled integro-

differential equations

[Tdt + Udt − Edt]ϕ
J
L(Rdt) +

∫ Rm

0

V J
dt:αn(Rdt, Rαn)ϕJ

L′(Rαn)dRαn = 0

[Tαn + Uαn − Eαn]ϕJ
L′(Rαn) +

∫ Rm

0

V J
αn:dt(Rαn, Rdt)ϕ

J
L(Rdt)dRdt = 0 . (17)

The channel potentials Udt and Uαn are used from the above analyses of the NCSM resonance

wave functions. The non-local transfer kernels are the sum of

V J ;n
dt:αn(Rdt, Rαn) = 〈[ψdψtYL(R̂dt)]J |Vpn + Vtn − Uαn|[ψαψnYL′(Rαn)]J〉 . (18)

for the ‘direct’ neutron transfer (n+ p)d + t→ (t+ p)α + n, and of

V J ;d
dt:αn(Rdt, Rαn) = 〈[ψdψtYL(R̂dt)]J |Vdn + Vdn − Uαn|[ψαψnYL′(Rαn)]J〉 . (19)

for the ‘exchange’ deuteron transfer d+ (d+ n)t → (d+ d)α + n.
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When the direct and exchange transfer mechanisms both included, we obtain the S-

factor presented in Fig. 13 by the dashed line together with the experimental data. We use

a matching radius of Rm = 15 fm, as increasing this radius to 20 or 25 fm has negligible

effect.
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FIG. 13: S-factor of the 3H(d,n)4He transfer reaction calculated in the coupled channel formalism

with cluster-cluster potentials obtained from the ab initio overlap function fits is compared to

experimental data. The dashed line correspond to calculation with all parameters determined

from ab initio NCSM overlap functions. The full line corresponds to calculation with re-adjusted

d+t central potential parameters.

We can see that the theoretical calculation agrees with experiment within a factor of two.

This is a significantly larger disagreement than we found for S-factors of capture reactions.

It should be noted, however, that complexity of the 3H(d,n)4He S-factor calculation is far

greater due to the importance of many channels, and the necessity to construct scatter-

ing potentials by fitting resonances in a coupled-channels approach. Further, the physical
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model that we rely on lacks some important features, in particular the antisymmetrization

of nucleons from different subclusters in the final Fresco calculation. This was not the case

in the capture reaction calculations. In a fully antisymmetrised model, we would not sep-

arately calculated the contributions from proton and deuteron transfers, as both would be

automatically included.

To improve agreement with experiment, we adjusted the radius and the diffusness of the

central part of the d+t potential by about 20% and readjusted the central potential strength

to fit the experimental position of the resonance. The modified parameters are shown in

the last line of Table III. The S-factor result after this re-adjustment is presented in Fig. 13

by the full line. We can see an almost perfect agreement with the data. It should be

emphasized that this kind of agreement would not be possible without the spin-orbit and in

particular the tensor interaction in the d+t potential determined from our ab initio NCSM

overlap functions. The modified radius and diffuseness of the central potential suggests a

smaller radius of the 5He 3/2+ state compared to that we obtained in our ab initio NCSM

calculation. However, a typical problem with the ab initio NCSM is an underestimation of

radii due to the use of the HO basis, i.e. incorrect description of the long-range correlations.

Therefore, we believe that the need to re-adjust the radius of the central potential is a result

of some other problem in the approach, such as the lack of inter-cluster antisymmetrization

in the final coupled-channels calculation which requires the proton and deuteron transfer

matrix elements to be calculated separately.

V. CONCLUSIONS

We presented coupled channel calculations of the S-factor of 3H(d,n)4He transfer reaction.

Potentials of different subclusters relevant for description of the transfer reaction were ob-

tained by fits to cluster overlap functions calculated within the ab initio no-core shell model.

This type of combined ab initio/potential model approach was successfully applied in the

past to describe low-energy capture reactions important for nuclear astrophysics. For those

reactions, typically a single or just a few channels were needed for an accurate description of

the S-factor. For the 3H(d,n)4He transfer reaction, many channels are relevant, which makes

the application of the combined approach quite challenging. The result of our theoretical

calculation with all parameters determined from the ab initio NCSM overap functions agrees
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with experiment within a factor of two. By performing a simple re-adjustment of the order

of 20% of d+t central potential radius and diffuseness parameters, we obtain an almost per-

fect agreement with the experimental data. This kind of agreement would not be possible

without the spin-orbit and in particular the tensor interaction in the d+t potential deter-

mined from our ab initio NCSM overlap functions. The modified radius and diffuseness of

the central potential suggests a smaller radius of the 5He 3/2+ state compared to that we

obtained in our ab initio NCSM calculation. However, it is known that the ab initio NCSM

typically underestimates radii due to the use of the HO basis, i.e. incorrect description of

the long-range correlations. Therefore, we believe that the need to re-adjust the radius of

the central potential is a result of some other problem in the approach, such as the lack of

inter-cluster antisymmetrization in the final coupled channel calculation.

VI. OUTLOOK: TOWARDS A FULLY AB INITIO CALCULATION OF THE

3H(D,N)4HE S-FACTOR

In the previous section, we highlighted shortcomings of the ab initio NCSM, its incorrect

description of long-range correlations and its lack of coupling to continuum. Further, we

highlighted a potential problem of the coupled-channel approach due to the neglect of the

Pauli principle, i.e. the inter-cluster antisymmetrization.

If we want to build upon the ab initio NCSM to microscopically describe loosely bound

systems as well as nuclear reactions, the approach must be augmented by explicitly including

cluster states such as, e.g. those given in Eq. (1), and solve for their relative motion while

imposing the proper boundary conditions. This can be done by extending the ab initio

NCSM HO basis through the addition of the cluster states. This would result in an over-

complete basis with the cluster relative motion wave functions as amplitudes that need to

be determined. The first step in this direction is to consider the cluster basis alone. This

approach is very much in the spirit of the resonating group method (RGM) [24], a technique

that considers clusters with fixed internal degrees of freedom, treats the Pauli principle

exactly and solves the many-body problem by determining the relative motion between

the various clusters. In our approach, we use the ab initio NCSM wave functions for the

clusters involved and the ab initio NCSM effective interactions derived from realistic NN

(and eventually also from NNN) potentials.
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The general outline of the formalism is as follows. The many-body wave function is

approximated by a superposition of binary cluster channel wave functions

Ψ(A) =
∑

ν

Â
[
ψ

(A−a)
1ν ψ

(a)
2ν ϕν(~rA−a,a)

]
=

∑
ν

∫
d~r ϕν(~r ) ÂΦ

(A−a,a)
ν~r , (20)

with

Φ
(A−a,a)
ν~r = ψ

(A−a)
1ν ψ

(a)
2ν δ(~r − ~rA−a,a) . (21)

Here, Â is the antisymmetrizer accounting for the exchanges of nucleons between the two

clusters (which are already antisymmetric with respect to exchanges of internal nucleons).

The relative-motion wave functions ϕν depend on the relative-distance between the center of

masses of the two clusters in channel ν. They can be determined by solving the many-body

Schrödinger equation in the Hilbert space spanned by the basis functions (21):

HΨ(A) = EΨ(A) −→
∑

ν

∫
d~r

[
H(A−a,a)

µν (~r ′, ~r )− EN (A−a,a)
µν (~r ′, ~r )

]
ϕν(~r ) , (22)

where the Hamiltonian and norm kernels are defined as

H(A−a,a)
µν (~r ′, ~r ) =

〈
Φ

(A−a,a)
µ~r ′

∣∣∣ÂH Â∣∣∣ Φ
(A−a,a)
ν~r

〉
, (23)

N (A−a,a)
µν (~r ′, ~r ) =

〈
Φ

(A−a,a)
µ~r ′

∣∣∣Â2
∣∣∣ Φ

(A−a,a)
ν~r

〉
. (24)

The most challenging task is to evaluate the Hamiltonian kernel and the norm kernel. We

now briefly outline, how this is done when ab initio NCSM wave functions are used for the

binary cluster states. From now on, let us consider the cluster states with a single-nucleon

projectile (a = 1 in Eq. 20). A generalization is straightforward. Using an alternative

coupling scheme compared to Eq. (1), we introduce

〈~ξ1 . . . ~ξA−2ξ
′
A−1ξ̂A−1|Φ(A−1,1)JMTMT

(αI1T1, 1
2

1
2
);sl

; δξA−1
〉

=
∑

(I1M1
1
2
ms|sm)(smlml|JM)(T1MT1

1
2
mt|TMT )

δ(ξA−1−ξ′A−1)

ξA−1ξ′A−1

× Ylml
(ξ̂A−1)χmsχmt〈~ξ1 . . . ~ξA−2|A− 1αI1M1T1MT1〉 , (25)

with the spin and isospin coordinates omitted to simplify the notation. The Jacobi coor-

dinates were defined in Eq. (2). Using the latter cluster basis and the following definition

of the antisymmetrizer Â = 1/
√
A(1 −

∑A−1
j=1 Pj,A) with Pj,A the transposition operator of

nucleons j and A, the norm kernel can be expressed as

N (A−1,1)
µν (r′, r) = δµν

δ(r′ − r)

r′r
− (A− 1)

∑
n′n

Rn′l′(r
′)

× 〈Φ(A−1,1)JT

(α′I′1T ′
1,

1
2

1
2
)s′l′

;n′l′|PA,A−1|Φ(A−1,1)JT

(αI1T1,
1
2

1
2
)sl

;nl〉Rnl(r) , (26)
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with µ ≡ (α′I ′1T
′
1,

1
2

1
2
)s′, ν ≡ (αI1T1,

1
2

1
2
)s and PA,A−1 the transposition operator of nucleons

A and A − 1. The coordinates r are related to ξA−1 by r =
√

A
A−1

ξA−1 and the HO length

parameter of the radial HO wave functions is b =
√

~
A−1

A
mΩ

. The matrix element of the

transposition operator PA,A−1 can be directly evaluated using the ab initio NCSM wave

functions expanded in Jacobi coordinate HO basis. However, a crucial feature of the ab

initio NCSM approach is that the matrix elements that enter the norm kernel and the

Hamiltonian kernel can be equivalently evaluated using the ab initio NCSM wave functions

expanded in the Slater determinant HO basis. This is achieved in two stages. First, we

calculate the SD matrix element as

SD〈Φ(A−1,1)JT

(α′I′1T ′
1,

1
2

1
2
)s′l′

;n′l′|PA,A−1|Φ(A−1,1)JT

(αI1T1,
1
2

1
2
)sl

;nl〉SD =

1

A− 1

∑
jj′Kτ

 I1
1
2
s

l J j


 I ′1

1
2
s′

l′ J j′


 I1 K I ′1

j′ J j


 T1 τ T ′

1

1
2
T 1

2


× ŝŝ′ĵĵ′K̂τ̂(−1)I′1+j′+J(−1)T1+

1
2

+ T

× SD〈A− 1α′I ′1T
′
1|||(a

†
nlj

1
2

ã
n′l′j′

1
2
)(Kτ)|||A− 1αI1T1〉SD . (27)

Second, it is possible to show that the matrix element in the SD basis is related to the one

in the Jacobi coordinate basis:

SD〈Φ(A−1,1)JT

(α′I′1T ′
1,

1
2

1
2
)s′l′

;n′l′|PA,A−1|Φ(A−1,1)JT

(αI1T1,
1
2

1
2
)sl

;nl〉SD =∑
nrlrn′rl′rJr

〈Φ(A−1,1)JrT

(α′I′1T ′
1,

1
2

1
2
)s′l′r

;n′rl
′
r|PA,A−1|Φ(A−1,1)JrT

(αI1T1,
1
2

1
2
)slr

;nrlr〉

×
∑
NL

l̂l̂′Ĵ2
r (−1)s+lr−s−l′r

 s lr Jr

L J l


 s′ l′r Jr

L J l′


× 〈nrlrNLl|00nll〉 1

A−1
〈n′rl′rNLl′|00n′l′l′〉 1

A−1
. (28)

This relation then defines a matrix that one inverts to get the Jacobi-coordinate matrix

element. This is analogous to what was done to obtain the translationally invariant density

in Ref. [25]. The Hamiltonian kernel can be evaluated in a similar yet more involved way. It

consists of a kinetic term, a NN potential direct term associated with the operator VA,A−1(1−

PA,A−1) and a NN potential exchange term associated with the operator VA,A−2PA,A−1 (plus

terms arising from the NNN interaction). The ability to employ wave functions expanded

in the SD basis opens the possibility to apply this formalism for nuclei with A > 5.
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FIG. 14: The exchange part of the norm kernel of the n+4He system. Left, the convergence with

the size of the basis of the 4He wave function for the 2S1/2 channel. Right, results for channels are

compared. The chiral EFT NN potential was used.

In Fig. 14, we show the exchange part of the norm kernel for the n+4He system, in

particular the second term of Eq. (26) multiplied by rr′. It is apparent that we are able

to reach convergence for the kernel. Furthemore, the 2S1/2 channel shows, as it should the

effect of the Pauli principle. Indeed, the 4He wave function is dominated by the four nucleon

s-shell configuration. The Pauli principle prevents adding the fifth nucleon to the same shell.

In Fig. 15, we show the direct and the exchange contributions of the NN potential to the

Hamiltonian kernel as well as their sum for the n+4He system. Again, the Pauli principle

is manifest in the 2S1/2 channel. We were able to obtain the presented results using wave

functions expanded both in the Jacobi-coordinate and the SD basis. The two independent

calculations gave identical results as expected. Full details regarding this approach will be

given in Ref. [26]. Here, we present preliminary n+4He phase shift result for the 2S1/2,

2P3/2,
2P1/2 and 2D3/2 channels in Fig. 16. The results obtained so far are quite sensible

and promising. For a comparison, see Fig. 11 with the phase shifts obtained using our fitted

WS potential. We are able to reach convergence with realistic low-momentum Vlowk NN

interactions [27]. We are confident that using the combined NCSM-RGM approach is the

right way to calculate the 3H(d,n)4He S-factor from first pinciples and with a predictive

power.
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[2] P. Navrátil, J. P. Vary and B. R. Barrett, Phys. Rev. Lett. 84, 5728 (2000); Phys. Rev. C 62,

30



0 1 2 3 4 5 6 7 8 9 10
E [MeV]

-90

-60

-30

0

30

60

90

δ 
[d

eg
]

1/2
-

1/2
+

3/2
-

3/2
+

n+
4
He  

V
lowk

FIG. 16: The phase shifts of the n+4He system obtained in a fully ab initio calculation with no

adjustable parameters. Results of a converged calculation using the low-momentum Vlowk NN

interaction are presented.

054311 (2000).
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